Airfield Perspectives on the MSCR Asphalt Binder Grading System

Airfield Asphalt User/Producer Meeting 2023 Annual Tri-Service and Industry Review Meeting January 10th, 2023

Ben C. Cox, PhD, PE

Senior Research Engineer, US Army Corps of Engineers, ERDC 601-634-2376, benjamin.c.cox@usace.army.mil

Innovative solutions for a safer, better world

of Engineers®

Overview

- Objectives for this Multiple Stress Creep Recovery (MSCR) presentation:
 - 1. Explain what MSCR is its attributes and potential benefits
 - 2. Describe who is using it
 - 3. Discuss implications for airfield applications

Motivations

- The multiple stress creep recovery (MSCR) grading system is gradually replacing the current PG system at the state DOT level
- While nationwide implementation is still some ways off, current implementation levels are widespread enough that it has become a factor for multiple airfield paving projects
- MSCR is sometimes misunderstood as a simple naming convention change due to over-simplification in elevator-pitch-level conversation
- In reality, MSCR captures certain asphalt behaviors better than PG

Standard Specifications and Test Methods

	AASHTO	ASTM
PG Grading System	M320	D6373
DSR Test	T315	D7175
PG+ Elastic Recovery Test	T301	D6084
MSCR Grading System	M332	D8239
MSCR Test	T350	D7405
MSCR Elastic Behavior	R92	n/a

Current UFC and UFGS Guidance

- UFC 3-250-03 (Section 2-3.1)
 - Specify PG wherever possible; otherwise, Pen grades are acceptable
 - States PG+ tests can be used to ensure polymer modification
 - Briefly mentions MSCR is "in the works"
- UFGS 32 12 15.13 (Section 2.4)
 - Specify PG binders wherever possible
 - Grade bump based on tire pressure (100-200 psi \rightarrow +1 grade; +200 psi \rightarrow +2 grades)
 - Use PG+ testing for polymer-modified binder (elastic recovery)
 - Nothing on MSCR

PG System – Background

- Introduced early 1990s
- Example: PG 64-22
- Dynamic Shear Rheometer (DSR) is used to characterize rutting

PG System – Background

- Rutting assessment developed primarily around (1) unmodified asphalts
 (2) G*/sin(δ)
- Based on performance-related properties that were intended to be blind to modification
- Works well for many cases (e.g. neat binders, moderate traffic), less adequate for accurately capturing modified binder performance
- Needed refinement for slow traffic, high traffic, heavy traffic led to the simple fix of grade bumping

AASHTO M320 – PG Grading Chart

Douter							
Max. Design Temp.	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82
Min. Design Temp.	-34 -40 -46	-10 -16 -22 -28 -34 -40 -46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34	-10 -16 -22 -28 -34
Original	_		_			_	
≥230 °C	Flash	Point					
<u>≤</u> 3 Pa-s @ 135 °C	Rotat	ional Viscosity	,				
> 1.00 kPa	DSR (G*/sin δ (Dynamic S	Shear Rheometer	r)			
2 1.00 KFa	46	52	58	64	70	76	82
(Rolling Thi	in Fili	m Oven) RT	'FO, Mas	s Change	e <u>≤</u> 1.00%		
> 2.20 kPa	DSR (G*/sin δ (Dynamic S	Shear Rheometer	r)			
<u> </u>	46	52	58	64	70	76	82
(Pressure A	ging	Vessel) PA	V				
20 hours, 2.10 MPa	90	90	100	100	100(110)	100(110)	100(110)
< 5000 kPa	DSR ($\mathbf{G^*sin}\;\delta$ (Dynamic Si	hear Rheometer)	1	Interm	ediate Temp. = [(M	lax. + Min.)/2] + 4
<u>2 0000 N a</u>	10 7 4	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 28 25	40 37 34 31 28
S ≤ 300 MPa	BBR S	6 (creep stiffne	ss) & m-va	lue (Bending Bea	m Rheometer)		
m <u>≥</u> 0.300	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24
If BBR m-value ≥ 0.30	0 and creep s	tiffness is between 300 and 6	00, the Direct Tensio	n tailure strain requirem	ent can be used in lieu of	the creep stiffness re	equirement.
$\mathcal{E}_{f} \ge 1.00\%$	-24 -30 -36	Direct Tension Tester) 0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24
US	Armv C	Corps of Enginee	ers • Enain	eer Research	and Develop	ment Cente	r

AASHTO M320 DSR

DSR testing is performed at a range of temperatures, normally 6 °C increments (e.g. 64, 70, 76 °C).

AASHTO M320 DSR Mechanics

Spindle oscillates from A to B to C to A

Test Outputs: complex modulus (G^*), phase angle (δ)

- Grade bumping results in binders being tested at much higher temperatures than would be experienced in the field
- Not all binders exhibit the same temperature sensitivity so grade bumping is not representative of in-service performance
- Conventional DSR testing occurs in the LVE range (low stress/low strain), but damage (rutting/shear failure) does not; damage is a high stress/high strain phenomenon (non-linear)

- Load response for a polymer-modified binder is driven by base binder, entanglement of polymer chains, and extent of polymer cross-linking
- Polymers increase PG grade but are treated like a filler (stiffens)

• Stress level in DSR testing is generally not sufficient to mobilize the polymer network structure of modified binders

- $G^*/sin(\delta)$ does not necessarily correlate well to actual rutting
- G*/sin(δ) unable to adequately capture benefits of elastomeric modification b/c of δ 's small impact on G*/sin(δ) led to PG+ tests

PG+ Tests

- Many utilize PG+ tests (elastic recovery is common 18 states)
- Can be lengthy and/or complicated to run
- Better indication of polymer *presence* than *performance*

State of Practice – State Agencies (March 2020)

- 15 MSCR states
- 9 dual-use states
- General trend:
 3 states per year
 adopting MSCR

State of Practice – State Agencies (December 2022) M320 17 MSCR states M320 / M332 WA M332 ME MT ND • 9 dual-use states OR MN ID SD WI WY MI IA PA • Only 2 new states NE NV OH .DE IL IN UT in over 2 years CO MD CA KS MO DC KY NC TN OK ΑZ SC NM AR GA AL MS ΤX LA AK FL State binder spec usage as of Dec 2022

AASHTO M332 – MSCR Grading Chart

- Test at climate temperature (no grade bumping)
- Example: PG 64E-22 (generally akin to PG 76-22)
- S <10M ESALs and standard speed H >10M ESALs or slow traffic V >30M ESALs <u>or</u> standing traffic E >30M ESALs <u>and</u> standing traffic

High PG	PG 52	PG 58	PG 64	PG 70	PG 76			
Low PG	-10-16-22-28-34-40-46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34			
Original NO CHANGE TO TESTING								
≥230 °C	Flash Point, AASHTO T 48							
<u><</u> 3 Pa-s	Rotational Viscosity @ 135°C, AASHTO T 316							
> 1 00 kPa	DSR G*/sin δ (Dynamic Shear Rheometer), AASHTO T 315							
E	52	58	64	70	76			
RTFO (Rolling Thin Film Oven), AASHTO T 240								
≤ 1.00%	Mass Change							
\leq 4.5 kPa ⁻¹ S	MSCR Jnr, 3.2 (Multiple Stress Creep-Recovery), AASHTO T 350							
$\leq 1.0 \text{ kPa}^{-1} \text{ V}$ $\leq 0.5 \text{ kPa}^{-1} \text{ E}$	52	58	64	70	76			
< 75% S	MSCR Jnr, Diff (Multiple Stress Creep-Recovery), AASHTO T 350							
E	52	58	64	70	76			
PAV (Pressure Aging Vessel), AASHTO R28 NO CHANGE TO TESTING								
	90	100	100	100(110)	100(110)			
≤ 5000 kPa S ≤ 6000 kPa H	DSR G*sin δ (Dynamic Shear Rheometer), AASHTO T 315 Intermediate Temp. = [(High PG + Low PG)/2] + 4							
≤ 6000 kPa V ≤ 6000 kPa E	25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 31 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25							
S ≤ 300 MPa	BBR S (creep s	tiffness) & m-\	alue (Bending Bear	m Rheometer), AASH	TO T 313			
m ≥ 0.300	0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24							

AASHTO M332 (MSCR) DSR Mechanics

- Test at two stress levels Stress 0.1 and 3.2 kPa Creep 1 cycle = 1 sec creep loading then 9 sec recovery

AASHTO M332 (MSCR) DSR Mechanics

MSCR System – Advantages w.r.t. PG System

- Grade bumping is not necessary all testing occurs at the anticipated in-service temperature more representative
- J_{nr} better correlates to field rutting for <u>both</u> neat & modified binders
- %Recovery can replace other PG+ tests faster/easier and does a better job of quantifying polymer modification

MSCR System – Advantages w.r.t. PG System

- Testing at higher stress level better characterizes polymer modification
- Testing at two stress levels provides stress sensitivity check (J_{nr,diff})
- Polymer disentanglement is a contributing factor to stress sensitivity

J_{nr} vs G*/sin(δ)

 Multiple studies (lab, APT, interstate) have shown J_{nr} relates better to rutting than $G^*/sin(\delta)$

12

10

8

FHWA ALF

G*/sin d 64C

US Army Corps of Engineers • Engineer Research and Development Center

y = -7.4519x + 10.956 $R^2 = 0.1261$

MDOT Database

- Mississippi DOT has not yet implemented MSCR but has collected side-by-side data since 2011
- PG 76-22 MSCR grade varies could be "H", "V", or "E"
- One implication is potentially better discrimination with MSCR

PG Grade	Binders Tested	MSCR Grade (tested at 67 C)					
		S	Н	V	Е		
PG 67-22	23	22	1				
PG 76-22	44		1	3	40		

MDOT Database

- Polymers often required for reasons other than reduced rutting (reduce cracking, raveling)
- J_{nr} alone cannot identify elastomeric polymers but R_{3.2} can

MDOT Database

- $J_{nr,diff}$ is % difference between $J_{nr,0.1}$ and $J_{nr,3.2}$
- J_{nr,diff} is stress sensitivity parameter
- MDOT data shows higher levels of stress sensitivity in PG 76-22 binders

 This is due to two-phase nature of polymer modified binders; they generally become non-linear above 0.8 kPa stress as polymer chains start to extend and disentangle

ERDC Testing

		PG			MSCR				
PG Grade	UTI	δ (°)	G*/sin(δ) (kPa)	P/F Temp (°C)	J _{nr, 3.2} (1/kPa)	J _{nr,diff} (%)	R _{3.2} (%)	Grade	Notes
PG 64-22	86	83.4	3.12	66.8	3.3	15	0.0	S	
PG 67-22	89	84.7	2.92	69.1	2.1	13	0.4	S	
PG 67-22	89	78.2	3.97	71.9	1.5	29	3.1	Н	
PG 76-22	98	63.3	2.25	76.3	0.2	31	81	Е	
PG 76-22	98	73.1	3.33	80.0	0.4	39	34	E	
PG 76-22	98	65.8	3.01	79.4	0.2	47	72	E	
PG 82-22	104	61.3	2.39	95.1	0.0	70	87	Е	
PG 88-22	110	60.8	2.61	90.1	0.0	74	89	Е	
PG 64-28	92	77.4	3.77	68.5	1.0	36	5.3	Н	
PG 64-28	92	70.5	4.15	69.9	0.5	33	41	V	
PG 70-28	98	73.5	3.07	73.2	0.3	38	36	Е	
PG 70-28	98	61.4	3.14	74.3	0.1	38	88	Е	
PG 70-28	98	61.5	2.47	71.4	0.1	86 <mark>(F)</mark>	86	Е	
PG 76-28	104	46.7	2.70	85.3	0.0	88 <mark>(F)</mark>	96	Е	
PG 70-22 (Bad)	92				1.4	49	1.4	Н	3% SBS (not cross-linked)
PG 76-22 (Bad)	98	78.0	2.40	76.8	1.1	1283 <mark>(F)</mark>	1.1	Н	6% polyethylene (LDPE)
PG 76-22 (Bad)	98	81.5	3.45	73.7	0.3	28	30	E	3% natural latex rubber

ERDC Results

- The two PG 64-28s range from H to V and below to above recovery curve
- The UTI 98 binders are all E grades but there are two distinct groups; one is clearly set apart above recovery curve

ERDC Results

- Higher-end airfield binders (PG 76-28, 82-22, 88-22) are far to the left of E band
- Not distinct from other E grades – potential drawback to current MSCR letter grades

ERDC Results

- Custom-blend "bad" binders shown as reference
- PG 76-22 (3% SBS) was E grade but below curve (it was intentionally not cross-linked)
- PG 76-22 (F) (6% LDPE) was H grade, below curve
- PG 70-22 (3% natural latex rubber) was H grade, below curve

Stress Sensitivity Case

- PG 76-22 (PG 64-22 modified with LDPE)
- MSCR grades it a PG 64H-22, but...
- Fails $J_{nr,diff}$ criteria of <75% $J_{nr,diff}$ was 1,283%
- This binder would not have been flagged with PG system

State DOT Examples for High Grades

- Additional letter grade
 - Iowa adopted an additional E+ grade (J_{nr} < 0.5, R_{3.2} > 90%)
 64-22S, 64-22H, 64-22V, 64-22E, 64-22E+
- Combination PG grade bump and MSCR
 - Maine allows PG 64-28, PG 64E-28, and PG 70E-28
 - Rhode Island allows PG 64S-28, PG 64E-28, and PG 70E-34
- Combination PG grade bump, MSCR, additional letter grade
 - Virginia's HP binder is PG 76E-28 (HP) (tested at 76 C, J_{nr} < 0.1, R_{3.2} > 90%)

Color-Code Legend Conventional PG Conventional MSCR Non-conventional

Summary

- MSCR at higher stress levels is better related to rutting than PG and is also informative regarding stress sensitivity and elastic properties without the need for additional tests (i.e., PG+ tests)
- Some questions remain with regard to airfield implementation
 - MSCR system was developed around highway loadings...appropriate?
 - How should highly modified binders (e.g. PG 82-22, PG 88-22) be distinguished from other E grades like PG 76-22?
 - Add additional requirements?
 - "Grade bump" via increased stress level (e.g., 10 kPa as in Golalipour et al. 2017)? This likely requires research.
- Overall, MSCR has room for growth relative to PG and should be considered (dual spec at minimum to handle supply in MSCR states)
- Even if MSCR is not specified in full, replace elastic recovery with MSCR $R_{3.2}$ simpler, quicker, easier, equipment more readily available, better discretion

Questions?

Ben Cox, Benjamin.C.Cox@usace.army.mil, 601-634-2376

